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Why Machine Learning



Fincrime Team Objectives

e Prevent onboarding of criminals

e Minimizing the impact on good customers
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In fast growing companies
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In fast growing companies

Operational A Backlog
team growth creation
e

* Backlog : alerts / reviews generated



In fast growing companies
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Machine learning system

Gives us :
% Stable backlog creation

% Reduce risk exposure

Needs to be :
% Robust : it adapts to changing conditions

% Defensible : understandable and credible to a third party



How do we do that



ML system components

1. Feature creation & labelling
2. Automatic model retraining (closed-loop learning)
3. Model governance

4. Model interpretability



ML system components

1. Feature creation & labelling



Features creation

Feature : The numerical representation of an observed behaviour
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Defensible :
If features can be explained model results can be better interpreted /
explained



Labelling
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ML system components

2. Automatic model retraining (closed-loop learning)
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Closed-loop learning
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ML system components

3. Model governance



Model governance
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Product coverage
Risk typology coverage
Data always up-to-date

Update models frequently
(no do-and-forget attitude)

Tracking all important
model metrics (in prod)

Features & labels quality
monitoring

Model Quality




ML system components

4. Model interpretability



Model interpretability

Shapley or Lime for ‘local’ interpretability
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Feature influence

Name

feature #38
feature #2
feature #22
feature #6
feature #45
feature #13
feature #21
feature #23
feature #17
feature #31
feature #54
feature #9
feature #18
feature #7
feature #28
feature #5
feature #44
feature #32
feature #78

feature #1

Value

10

30

xyz
0.9
rrr
rerr
eeee
0.99
0.45
0.7
www
-1
1

Importance

0.277

0.240

0.238

0.187

0.167

0.163

0.140

0.070

0.069

0.053

-0.136

-0.150

-0.163

-0.159

-0.167

-0.235

-0.281

-0.332

-0.334

-0.421



Model interpretability

Shapley or Lime for ‘local’ interpretability

Feature influence

Name Value

feature #38 \ 10

feature #2 0

feature #22 30

feature #6 0

feature #45 Xxyz

feature #13 0.9

feature #21 rrr

feature #23 fr

feature #17 eeee

feature #31 > 0.99

feature #54 O 0.45

feature #9 0.7

feature #18 www -0.153

feature #7 -1 -0.159

feature #28 1 Features linked to a specific pattern or
ore ““ behaviour - easier to interpret / explain the
feature #44 uuu -0.281 o o

feature #32 0.1 -0.332 mOdeI deCISlon

feature #78 10 -0.334

feature #1 / 0 -0.421



Current challenges



Challenges

1. Scaling of ML infrastructure (with growth)
2. Features group interpretability (generating
narratives)
3. Enhancing features and labels quality

monitoring



A Thank you!



