

Building robust and defensible ML systems in Fincrime

Luca Traverso Lead Data Scientist @Wise

Why Machine Learning.

Fincrime Team Objectives

- Prevent onboarding of criminals
- Minimizing the impact on good customers

In fast growing companies

In fast growing companies

In fast growing companies

Machine learning system

Gives us :

- Stable backlog creation
- Reduce risk exposure

Needs to be :

- Robust : it adapts to changing conditions
- Defensible : understandable and credible to a third party

How do we do that ?

- **1. Feature creation & labelling**
 - 2. Automatic model retraining (closed-loop learning)
 - 3. Model governance
 - 4. Model interpretability

1. Feature creation & labelling

- 2. Automatic model retraining (closed-loop learning)
 - 3. Model governance
 - 4. Model interpretability

Features creation

Feature : The numerical representation of an observed behaviour

Defensible :

If features can be explained model results can be better interpreted / explained

State 3

1. Feature creation & labelling

- 2. Automatic model retraining (closed-loop learning)
 - 3. Model governance
 - 4. Model interpretability

- **1. Feature creation & labelling**
 - 2. Automatic model retraining (closed-loop learning)

3. Model governance

4. Model interpretability

Model governance

- Product coverage
- Risk typology coverage
- Data always up-to-date
- Update models frequently (no do-and-forget attitude)
- Tracking all important model metrics (in prod)
- Features & labels quality monitoring

https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html

- **1. Feature creation & labelling**
 - 2. Automatic model retraining (closed-loop learning)
 - 3. Model governance
 - 4. Model interpretability

Model interpretability

Shapley or Lime for 'local' interpretability

Model interpretability

Shapley or Lime for 'local' interpretability

Current challenges .

Challenges

- **1. Scaling of ML infrastructure (with growth)**
 - 2. Features group interpretability (generating narratives)
 - 3. Enhancing features and labels quality monitoring

🙏 Thank you!

7