Under supervised semantic
segmentation

Doing more with less
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Segmentation problem - predicting class for each pixel in the
image (in this case pedestrian and background)

oY

e e A

255

SN P S RS D s G SRl S SR VIS S




Segmentation problem - predicting class for each pixel in the
image (In this case pedestrian and background)




Segmentation problem - predicting class for each pixel in the

image (in this case pedestrian and background)













Brightfield
Image

Segmented
nuclel




Brightfield
Image

Segmented
nuclel

VWhere training masks come from?
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~luorescent Images are relatively easy”™ to segment
using semi-automated classical algorithms
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fluorescent Images



Practical segmentation of nuclel in brignhttield cell images
with neural networks trained on fluorescently labelleo
samples
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The results of this research is used outside our group
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Training Images

Weak labels
(artifact vs no artifact)
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Artseg: Rapid Artifact Segmentation and Removal in
Brightfield Cell Microscopy Images
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[t has been shown before that one can
reduce the need for training data via
transfer learning
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Pretext task: something that prepares model for the main task
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Pretext task: something that prepares model for the main task

Input U-Net Reconstruct the
Image model same image
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Pretext task: something that prepares model for the main task

Input U-Net Reconstruct the same image
Image model (10 p|><e|s to the nght)
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Main task: segment nuclel
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Self-supervised leaming

Pretext task: useful pretext is highly domain dependent
and needs effort to figure out. Jury Is out to evaluate various
approaches.

Main task: segment nuclel

Brightfield U-Net Segmented
image model nuclel
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Brightfield Thresholded
Image Masks
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Brightfield Thresholded
Image Masks

U-Net

Generated
pseudo-mask New training target



Unsupervised segmentation

Did not work In our case, as It turned out to be hard to
organise optimisation process

U-Net

Generated
pseudo-mask New training target

oy Tetiana Rabiichuk



After pbattling with unsupervised learning, we come to
appreciate manual labelling

Phase image
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After pbattling with unsupervised learning, we come to
appreciate manual labelling

Manual annotation in
LabeIStudio
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1 training image 4 training Images 8 trammg mages 10 training Images

PW F1 score 0.48 + 0.34 P\W 1 + 0.07 PW F1 + 0.03 PW F1
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Complete annotations can be impossible to get using manual
annotation, pbut even incomplete or noisy annotations would do.

Reference mask

Corrupted mask

oy Aleksandr Krylov
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Complete annotations can be impossible to get using manual
annotation, pbut even incomplete or noisy annotations would do.

Reference mask

Corrupted mask

Probability map

Input image (BF)

Probability map
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Complete annotations can be impossible to get using manual
annotation, but even incomplete or noisy annotations would do.

Ground truth 100% of training data 50% of training data
objects model predictions model predictions

YOLOV5 was used in these experiments

oy Denys Kaliuzhnyi, Farid Hasanov & Mikhail Papkov



~ive stages of working in a small

or no data regime Acceptance
“This Is not so hard

and it does not have
to be perfect!”

Bargaining
“We are surely not
going to label our
Denial own data”?!”
“Surely one can train
models with little
data”!”

Anger Depression
“This cannot be this “Unsupervised
nard!” strategies are bogus!”
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U-Net

ScoreCAM-U-Net
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