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Fluorescent images are relatively easy* to segment 
using semi-automated classical algorithms
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The results of this research is used outside our group
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Pretext task: useful pretext is highly domain dependent 
and needs effort to figure out. Jury is out to evaluate various 

approaches.

Self-supervised learning
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Unsupervised segmentation
Did not work in our case, as it turned out to be hard to 

organise optimisation process

by Tetiana Rabiichuk
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Phase image High contrast Manual annotation in 
LabelStudio

1 training image 4 training images 8 training images 16 training images

PW F1 score 0.48 + 0.34 PW F1 + 0.07 PW F1 + 0.03 PW F1

by Yaroslav Prytula
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by Denys Kaliuzhnyi, Farid Hasanov & Mikhail Papkov

Ground truth 
objects

100% of training data 
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Complete annotations can be impossible to get using manual 
annotation, but even incomplete or noisy annotations would do.

50% of training data 
model predictions

YOLOv5 was used in these experiments



Denial  
“Surely one can train 

models with little 
data?!”

Anger  
“This cannot be this 

hard!”

Depression  
“Unsupervised 

strategies are bogus!”

Bargaining  
“We are surely not 
going to label our 

own data?!”

Acceptance  
“This is not so hard 

and it does not have 
to be perfect!”

Five stages of working in a small 
or no data regime
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